


Also, once you have a general expression for a thing, you've essentially solved that class of problem. In general, whenever you can – that is, whenever it's not prohibitively difficult – you should try to solve the thing symbolically to gain the greatest insight. Press the Continue (Continua) button, and once the projectile has reached the ground level (y 0), press the Pause (Pauso) button. For example, Maybe the expression for the area of a circle shows up somewhere in the final expression, which can suggest a different derivation or interpretation.

But when you solve the thing symbolically, you can interpret the equation, see clearly what's proportional to what, any algebraic symmetry (functional symmetry, being able to swap variables, so on), you can see patterns or that some other quantity might be hidden in the thing. When you solve a thing numerically, you just get some number (or a vector, etc.) at the end (and maybe some units). Yeah, and it's actually a great way to gain insight into the nature of the thing. 8 s m ) 2 (plug in horizontal and vertical components of the final velocity) v, squared, equals, left parenthesis, 7, point, 00, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction, right parenthesis, squared, plus, left parenthesis, minus, 20, point, 8, start fraction, start text, m, end text, divided by, start text, s, end text, end fraction, right parenthesis, squared, start text, left parenthesis, p, l, u, g, space, i, n, space, h, o, r, i, z, o, n, t, a, l, space, a, n, d, space, v, e, r, t, i, c, a, l, space, c, o, m, p, o, n, e, n, t, s, space, o, f, space, t, h, e, space, f, i, n, a, l, space, v, e, l, o, c, i, t, y, right parenthesis, end text
